285. Physical Properties and Chemical Constitution. Part VI. Some Saturated and Unsaturated Cyano-esters.

By David M. Cowan and Arthur I. Vogel.

The refractive indices for the C, D, F, and G^{\prime} lines at 20.0°, and the surface tensions and densities over a range of temperature, have been determined for the following compounds: ethyl cyanoacetate, ethyl α-cyano- $\beta \beta$-dimethylpropionate, cyano-esters of the general formula $\mathrm{CR}_{1} \mathrm{R}_{2} \cdot \mathrm{C}(\mathrm{CN}) \cdot \mathrm{CO}_{2} \mathrm{Et}$ and $\mathrm{CHR}_{1} \mathrm{R}_{2} \cdot \mathrm{CH}(\mathrm{CN}) \cdot \mathrm{CO}_{2} \mathrm{Et}$, where $R_{1} R_{2}=M e, E t, E t, E t, M e, \operatorname{Pr}^{a}, E t, \operatorname{Pr}^{a}$, and $\operatorname{Pr}^{a}, \operatorname{Pr}^{a}$. The molecular refractivities and parachors have been evaluated.

The results now obtained are summarised in Table I; the calculated values of the parachor, P, based on Sugden's constants (J., 1924, 125, 1180),* and of the molecular refractivities (Eisenlohr, Z. physikal. Chem., 1910, 75, 585; 1912, 79, 129) are also included. It will be noted that (i) for most substances the observed parachor values are less than those calculated-the differences being far in excess of the experimental error of the

* Sugden's more recent values (see Mann and Purdie, J., 1935, 1549) are not sufficiently complete to permit the calculation of the parachors of the cyano-esters.

Table I.

	P.		${ }^{\left[R_{L}\right]}{ }^{\text {c }}$.		$\left[R_{L}\right]_{\mathbf{D}}$.		$\left[R_{L}\right]_{\mathbf{F}}$.		$\left[R_{L}\right]^{G^{\prime}}$		$\begin{gathered} M n_{D}^{20^{\circ}}, \\ \text { obs. } \end{gathered}$
$\mathrm{CR}_{1} \mathrm{R}_{2} \cdot \mathrm{C}(\mathrm{CN}) \cdot \mathrm{CO}_{2} \mathrm{Et}$.	Obs.	Calc.									
$\mathbf{R 1}_{\mathbf{1}} \mathbf{2}_{\mathbf{2}}=\mathrm{Me}, \mathrm{Et}$	403.0	$407 \cdot 8$	45.73	$44 \cdot 41$	46-03	44.65	$46 \cdot 80$	$45 \cdot 19$	$47 \cdot 44$	$45 \cdot 65$	$245 \cdot 40$
$=\mathrm{Et}, \mathrm{Et}$	$440 \cdot 4$	446.8	$50 \cdot 30$	$49 \cdot 01$	$50 \cdot 79$	$49 \cdot 27$	$51 \cdot 46$	$49 \cdot 86$	$52 \cdot 13$	$50 \cdot 36$	$265 \cdot 85$
$=\mathrm{Me}, \mathrm{Pr}^{\boldsymbol{a}}$	$441 \cdot 2$	446.8	50.59	49.01	50.92	$49 \cdot 27$	51.77	$49 \cdot 86$	$52 \cdot 45$	$50 \cdot 36$	266-10
$=\mathrm{Et} \mathrm{Pr}^{\text {a }}$	$477 \cdot 7$	$485 \cdot 8$	55.25	53.61	$55 \cdot 61$	53.89	56.51	54.53	57.26	$55 \cdot 07$	286.72
$=\operatorname{Pr}{ }^{\text {a }}$, $\mathrm{Pr}^{\text {a }}$	516.6	524.8	59.99	58.21	$60 \cdot 19$	$58 \cdot 50$	61-34	$59 \cdot 20$	$62 \cdot 15$	59.78	307-16
$\mathrm{CHR}_{1} \mathrm{R}_{2} \cdot \mathrm{CH}(\mathrm{CN}) \cdot \mathrm{CO}_{2} \mathrm{Et}$.											
$\mathrm{R}_{1} \mathrm{R}_{2}=\mathrm{Me}, \mathrm{Me}$	$377 \cdot 3$	379-8	$40 \cdot 48$	$40 \cdot 31$	$40 \cdot 67$	$40 \cdot 50$	41.09	40.93	$41 \cdot 42$	41.30	220.77
$=\mathrm{Me}, \mathrm{Et}$	414.3	418.8	44.90	$44 \cdot 91$	$45 \cdot 10$	$45 \cdot 12$	45.58	$45 \cdot 60$	$45 \cdot 92$	46.01	241.65
$=\mathrm{Et}, \mathrm{Et}$	$450 \cdot 4$	$457 \cdot 8$	$49 \cdot 40$	49.51	$49 \cdot 62$	49.73	$50 \cdot 15$	$50 \cdot 27$	50.52	$50 \cdot 72$	$262 \cdot 69$
$=\mathrm{Me}, \mathrm{Pr}^{\text {a }}$	$451 \cdot 6$	$457 \cdot 8$	49.63	49-51	$49 \cdot 86$	49.73	50.37	$50 \cdot 27$	50.76	$50 \cdot 72$	$262 \cdot 41$
$=\mathrm{Et}, \mathrm{Pr}^{\alpha}$	488.7	496.8	54.07	54-11	$54 \cdot 29$	54-35	54.87	54.94	55.28	$55 \cdot 43$	$283 \cdot 32$
$=\operatorname{Pr}^{\alpha}, \mathrm{Pr}^{\alpha}$	$527 \cdot 1$	$535 \cdot 8$	58.98	58.71	$59 \cdot 42$	58.97	59.90	$59 \cdot 60$	60.39	60.14	304.25
$\mathrm{CH}_{2}(\mathrm{CN}) \cdot \mathrm{CO}_{2} \mathrm{Et}$	262.4	$262 \cdot 8$	26.63	26.52	26.74	$26 \cdot 64$	27.03	26.93	27-24	$27 \cdot 17$	$160 \cdot 35$

determinations, and (ii) the molecular refractivities exhibit an exaltation for the unsaturated cyano-esters-this is probably due to the presence of the conjugated system $>\mathrm{C}=\mathrm{C}-\mathrm{C} \equiv \mathrm{N}$.

The various differences are shown in Table II. No comment is now made upon them except that attention is directed to the parachor differences, which are less than the accepted value of $39-40$ units.

$\left.\begin{array}{c} \mathrm{CR}_{1} \mathrm{R}_{2}: \mathrm{C}(\mathrm{CN}) \cdot \mathrm{CO}_{2} \mathrm{Et} . \\ \mathrm{R}_{1} \mathrm{R}_{2}=\mathrm{Me}, \mathrm{Et} \end{array}\right\}$	ΔP. 37.4	$\begin{gathered} \Delta\left[R_{L}\right] \mathrm{c} . \\ 4.57 \end{gathered}$	$\begin{gathered} \Delta\left[R_{L}\right]_{\mathrm{D}} . \\ 4.76 \end{gathered}$	$\begin{aligned} & \Delta\left[R_{L}\right]_{\mathrm{F}} . \\ & \mathbf{4 . 6 6} \end{aligned}$	$\begin{gathered} \Delta\left[R_{L}\right]_{\mathbf{Q}^{\prime}} . \\ 4.69 \end{gathered}$	$\begin{gathered} \Delta M n_{10}^{20} . \\ 20 \cdot 45 \end{gathered}$
$\left.\begin{array}{l} =\mathrm{Et}, \mathrm{Et} \\ =\mathrm{Et}, \mathrm{Pr}^{a} \end{array}\right\}$	37.3	4.95	4.82	$5 \cdot 05$	$5 \cdot 13$	20.87
$\left.=\operatorname{Pr}^{a}, \operatorname{Pr}^{a}\right\}$	38.9	4.74	$4 \cdot 58$	4.83	$4 \cdot 89$	20.44
$\left.\begin{array}{rl} \mathrm{R}_{2} \mathrm{R}_{2} & =\mathrm{Me}, \mathrm{Et} \\ & =\mathrm{Me}, \mathrm{Pr}^{a} \end{array}\right\}$	38.2	$4 \cdot 86$	$4 \cdot 89$	4.97	5.01	20.70
$=\mathrm{Et}, \mathrm{Pr}^{\text {a }}$, $\}$	36.5	$4 \cdot 66$	$4 \cdot 69$	4.74	4.81	20.62
$\mathrm{CHR}_{1} \mathrm{R}_{2} \cdot \mathrm{CH}(\mathrm{CN}) \cdot \mathrm{CO}_{2} \mathrm{Et}$.						
$\left.\begin{array}{rl}\mathrm{R}_{1} \mathrm{R}_{2} & =\mathrm{Me}, \mathrm{Me} \\ & =\mathrm{Me}, \mathrm{Et}\end{array}\right\}$	37.0	4.42	$4 \cdot 43$	$4 \cdot 49$	$4 \cdot 50$	20.88
$\left.\begin{array}{l}=\mathrm{Me}, \mathrm{Et} \\ =\mathrm{Et}, \mathrm{Et}\end{array}\right\}$	36.1	4.50	4.52	4.57	4.60	21.04
$=\mathrm{Et}, \mathrm{Pr}^{\boldsymbol{a}}$, $\}$	$38 \cdot 3$	4.67	4.67	4.72	$4 \cdot 76$	20.63
$\left.\begin{array}{l}=E t, \mathrm{Pr}^{\text {a }} \\ =\mathrm{Pr}^{a}, \mathrm{Pr}^{\text {a }}\end{array}\right\}$	$38 \cdot 4$	4.91	$5 \cdot 13$	5.03	$5 \cdot 11$	$20 \cdot 93$
$\mathrm{R}_{1} \mathrm{R}_{2}=\mathrm{Me}, \mathrm{Me}$)	37.0	$4 \cdot 42$	$4 \cdot 43$	$4 \cdot 49$	4.50	$20 \cdot 88$
$=\mathrm{Me}, \mathrm{Et}$	37.3	4.73	4.76	4.79	4.84	20.76
$\left.\begin{array}{l} =\mathrm{Me}, \mathrm{Pr}^{a} \\ =\mathrm{Et} . \mathrm{Pr}^{a} \end{array}\right\}$	$37 \cdot 1$	$4 \cdot 44$	4.43	4.50	$4 \cdot 52$	20.91

Experimental.

Preparation of Unsaturated Cyano-esters, $\mathrm{CR}_{1} \mathrm{R}_{2}: \mathrm{C}(\mathrm{CN}) \cdot \mathrm{CO}_{2} \mathrm{Et}$.-Most of these were prepared by the condensation of the appropriate ketone with ethyl cyanoacetate in the presence of anhydrous sodium sulphate and a little piperidine at 100°. Normal pressure was employed for acetone and methyl ethyl ketone; for the higher ketones the reaction was carried out in sealed pressure bottles. The unsaturated cyano-ester was separated by repeated fractionation through a Pyrex Scorah flask. Full experimental details will shortly be published.

Preparation of Saturated Cyano-esters, $\mathrm{CHR}_{1} \mathrm{R}_{2} \cdot \mathrm{CH}(\mathrm{CN}) \cdot \mathrm{CO}_{2} \mathrm{Et}$. -These were prepared by the reduction of the unsaturated cyano-esters with aluminium amalgam in moist ethereal solution (Vogel, J., 1927, 597) and purified by fractionation under diminished pressure.

Physical Measurements.-The densities, surface tensions, and refractive indices were determined as described in earlier papers of this series (compare Part III, J., 1938, 1325). The surface-tension apparatus A, B, and C were employed, the constants of which, when determined with pure benzene, were $1 \cdot 8725,2 \cdot 3449$, and 2.3740 respectively.

In the tabulated results, t is the temperature, h the observed difference in height (in mm.) in the two arms of the \mathbf{U}-tube, H the corrected value, $d_{0}^{0_{0}^{\circ}}$ the density (calculated from the observed densities by assuming a linear variation with temperature), γ the surface tension (dynes $/ \mathrm{cm}$.) computed from the equation $\gamma=K H d, P$ the parachor, M the molecular weight, and $M n_{\mathrm{D}}^{20.0}$ the molecular refraction coefficient. The parachor was calculated in the usual way. The number in parentheses following the values of γ_{20}. is the temperature coefficient of surface tension. All the measurements of the refractive indices were carried out at $20.0^{\circ} \pm$ 0.05°. Where 20° is used, 20.0° is to be understood; $n_{\mathrm{C}}, n_{\mathrm{D}}, n_{\mathrm{F}}$, etc., are to be taken as referring to $n_{\mathrm{O}}^{20 \cdot 0^{\circ}}$, etc., and R_{D}, etc., to $\left[R_{\mathrm{L}}\right]_{\mathrm{o}}$, etc.

Ethyl cyanoacetate. Boots's pure product was shaken several times with 10% sodium carbonate solution, washed well with water, dried (anhydrous sodium sulphate, shaking machine, 2 hours), and distilled from a fractionating Claisen flask. B. p. $85^{\circ} / 6 \mathrm{~mm}$.; $M=$ $113.12 ; n_{\mathrm{O}} 1 \cdot 41540, n_{\mathrm{D}} 1.41751, n_{\mathrm{F}} 1 \cdot 42263, n_{\mathrm{G}} 1.42639 ; R_{\mathrm{D}} 26.63, R_{\mathrm{D}} 26.74, R_{\mathrm{F}} 27.03, R_{\mathrm{G}}$, $27.24 ; R_{\mathrm{G}^{\prime}-\mathrm{c}} 0.61, R_{\mathrm{F}-\mathrm{o}} 0.40 ; M n_{\mathrm{D}}^{20^{\circ}} 160.35$.

$$
\text { Densities determined : } d_{4^{\circ}}^{20^{\circ}} 1 \cdot 0648, d_{4^{6} \cdot 1^{\circ}} 1 \cdot 0262, d_{4}^{87} \cdot 5^{\circ} 0.9990, d_{4}^{118 \cdot 6} 6^{\circ} 0.9682 \text {. }
$$

$\gamma_{20^{\circ}}=36.66(0 \cdot 11) . \quad$ Apparatus B.

t.	h.	H.	d°	γ.	P.	t.	h.	H.	$d^{\text {b }}$	γ.	P.
$19.1{ }^{\circ}$	14.95	14.71	1.0657	36.76	$261 \cdot 4$	$88.5{ }^{\circ}$	11.75	11.51	0.9980	29.21	263.5
61.9	13.53	13.29	$1 \cdot 0245$	31.93	262.5					Mea	262.4

Ethyl α-cyano- β-methyl-n-butyrate. B. p. $78.5^{\circ} / 4 \mathrm{~mm} . ; \quad M=155 \cdot 19 ; \quad n_{\mathrm{o}} 1.42041, n_{\mathrm{D}}$ $1.42256, n_{\mathrm{F}} 1.42773, n_{\mathrm{G}^{\prime}} 1.43160 ; R_{\mathrm{G}} 40.48, R_{\mathrm{D}} 40.67, R_{\mathrm{F}} 41.09, R_{\mathrm{G}^{\prime}} 41.42 ; R_{\mathrm{G}^{\prime}-\mathrm{a}} 0.94, R_{\mathrm{F}-\mathrm{o}}$ 0.61 ; $M n_{\mathrm{D}}^{20^{\circ}} 220 \cdot 77$.

Densities determined : $d_{4^{\circ}}^{20^{\circ}} 0.9710, d_{4^{64}}^{64 \cdot 1^{\circ}} 0.9307, d_{4 \cdot}^{88 \cdot 9^{\circ}} 0.9109$.

$$
\gamma_{20^{\circ}}=30.46\left(0.09_{1}\right) . \quad \text { App. } C .
$$

19.8	13.46	13.22	0.9712	30.48	375.5	87.3	11.49	11.25	0.9105	$24 \cdot 32$	378.5
61.6	12.28	12.04	0.9330	26.67	378.0					Mean 377.3	

Ethyl α-cyano- β-methyl-n-valerate. B. p. $98^{\circ} / 6 \mathrm{~mm} . ; \quad M=169 \cdot 22 ; n_{\mathrm{D}} 1 \cdot 42576, n_{\mathrm{D}} 1 \cdot 42797$, $n_{\mathrm{F}} 1.43316, n_{\mathrm{G}}, 1 \cdot 43689 ; R_{\mathrm{G}} 44.90, R_{\mathrm{D}} 45 \cdot 10, R_{\mathrm{F}} 45.58, R_{\mathrm{G}}, 45.92 ; R_{\mathbf{G}^{\prime}-\mathrm{c}} 1 \cdot 02, \quad R_{\mathrm{F}-\mathrm{O}} 0.68$; $M n_{D}^{20^{\circ}} 241 \cdot 65$.

Densities determined : $d_{40^{\circ}}^{20^{\circ}} 0.9653, d_{4^{6} \cdot 1^{\circ}}^{61.9310}, d_{4}^{86 \cdot 9^{\circ}} 0.9089$. $\gamma_{20^{\circ}}=30.78(0.089)$. App. A.

18.6	17.31	17.07	0.9666	30.90	412.7	86.9	14.75	14.51	0.9089	24.70	415.0
61.5	15.82	15.58	0.9306	27.15	415.3					Mean 414.3	

Ethyl α-cyano- β-ethyl-n-valevate. B. p. $99^{\circ} / 4 \mathrm{~mm} . ; ~ M=183 \cdot 25 ; n_{\mathrm{o}} 1.43127, n_{\mathrm{D}} 1.43350$, $n_{\mathrm{F}} 1 \cdot 43880, n_{\mathrm{G}} 1 \cdot 44264, R_{\mathrm{G}} 49 \cdot 40, R_{\mathrm{D}} 49 \cdot 62, R_{\mathrm{F}} 50 \cdot 15, R_{\mathrm{G}} 50.52 ; R_{\mathrm{G}-\mathrm{O}} 1 \cdot 12, R_{\mathrm{F}-\mathrm{O}} 0.75$; $M n_{\mathrm{D}}^{20^{\circ}} 262 \cdot 69$.

Densities determined : $d_{4^{\circ}}^{20^{\circ}} 0.9608, d_{4^{\circ}}^{61 \cdot 4^{\circ}} 0.9276, d_{4^{\circ}}^{85 \cdot 7^{\circ}} 0.9084$.

	$\gamma_{20^{\circ}}=30.98$	$\left(0.09_{2}\right)$. App. A.								
$18 \cdot 0$	17.53	17.29	0.9624	$31 \cdot 16$	449.9	$85 \cdot 7$	14.90	14.66	0.9084	$\mathbf{2 4 . 9 4}$
$61 \cdot 1$	15.86	15.62	0.9279	$27 \cdot 14$	450.8					$450 \cdot 8$
Mean	$450 \cdot 4$									

Ethyl α-cyano- β-methyl-n-hexoate. B. p. $101.5^{\circ} / 4 \mathrm{~mm}$.; $M=183.25 ; n_{\mathrm{c}} 1.42976, n_{\mathrm{D}}$ $1 \cdot 43199, n_{\mathrm{F}} 1 \cdot 43722, n_{G^{\prime}} 1 \cdot 44103 ; R_{\mathrm{d}} 49 \cdot 63, R_{\mathrm{D}} 49 \cdot 86, R_{\mathrm{F}} 50.37, R_{\mathrm{G}}, 50 \cdot 76 ; R_{\mathrm{G}^{\prime}-\mathrm{o}} 1 \cdot 13, R_{\mathrm{F}-\mathrm{O}}$ $0 \cdot 74$; $M n_{6}^{20^{\circ}} 262 \cdot 41$.

Densities determined : $d_{4^{\circ}}^{20^{\circ}} 0.9534, d_{4^{\circ}}^{61 \cdot 5^{\circ}} 0.9199, d_{4^{\circ}}^{86 \cdot 5^{\circ}} 0.8991$.

$\gamma_{20^{\circ}}=30.11\left(0.08_{7}\right) . \quad$ App. A.											
$14 \cdot 0$	17.31	$17 \cdot 07$	0.9583	$30 \cdot 63$	$449 \cdot 9$	$87 \cdot 0$	$14 \cdot 66$	14.42	0.8986	$24 \cdot 26$	452.6
$62 \cdot 3$	15.61	$15 \cdot 37$	0.9190	$26 \cdot 45$	$452 \cdot 2$					Mean	451.6

Ethyl α-cyano- β-ethyl-n-hexoate. B. p. $108^{\circ} / 5 \cdot 5 \mathrm{~mm}$.; $M=197 \cdot 27 ; n_{\mathrm{o}} 1 \cdot 43396, n_{\mathrm{D}} 1 \cdot 43620$, $n_{\mathrm{F}} 1 \cdot 44145, n_{\mathrm{G}^{\prime}} 1 \cdot 44531 ; R_{\mathrm{d}} 54.07, R_{\mathrm{D}} 54 \cdot 29, R_{\mathrm{F}} 54.87, R_{\mathrm{G}^{\prime}} 55 \cdot 28 ; R_{\mathrm{G}^{\prime}-\mathrm{ol}} 1 \cdot 21, R_{\mathrm{P}-\mathrm{o}} 0.80$; $M n_{\mathrm{D}}^{20^{\circ}}$ 283.32.

Densities determined : $d_{4^{\circ}}^{20^{\circ}} 0.9504, d_{4^{\circ}}^{62 \cdot 1^{\circ}} 0.9185, d_{4^{\circ}}^{87 \cdot 3^{\circ}} 0.8971$.

$\gamma_{20^{\circ}}=30.49\left(0.088_{8}\right) . \quad$ App. A.											
t.	h.	H.	${ }^{10}{ }^{\circ}{ }^{\circ}$.	γ.	P.	t.	h.	H.	$d^{40^{\circ}}$.	γ.	P.
15.0°	17.55	17.31	0.9543	30.93	487.5	$86 .{ }^{\circ}$	14.97	14.73	$0 \cdot 8978$	$24 \cdot 76$	$490 \cdot 2$
61.2	15.81	$15 \cdot 57$	0.9192	26.80	488.3					Mea	48

Ethyl α-cyano- β-n-propyl-n-hexoate. B. p. $120.5^{\circ} / 4 \mathrm{~mm} . ; \quad M=211.30 ; n_{\mathrm{D}} 1 \cdot 43778, n_{\mathrm{D}}$ $1 \cdot 43993, n_{\mathrm{F}} 1 \cdot 44569, n_{\mathrm{G}}{ }^{1} 1 \cdot 44994 ; R_{\mathrm{d}} 58 \cdot 98, R_{\mathrm{D}} 59 \cdot 42, R_{\mathrm{F}} 59.90, R_{\mathrm{G}}, 60 \cdot 39 ; R_{\mathrm{G}^{\prime}-\mathrm{o}} 1 \cdot 41, R_{\mathrm{F}-\mathrm{o}}$ 0.92 ; $M n_{\mathrm{D}}^{20^{\circ}} 304.25$.

Densities determined : $d_{4^{20}}^{20^{\circ}} 0.9401, d_{4}^{66 \cdot 6^{\circ}} 0.9089, d_{4}^{88 \cdot 5^{\circ}} 0.8900$.

$\gamma_{20^{\circ}}=30.06\left(0.08_{5}\right) . \quad$ App. A.											
$20 \cdot 4$	$17 \cdot 30$	17.06	0.9398	$30 \cdot 02$	526.3	86.5	$14 \cdot 82$	14.58	$0 \cdot 8900$	24.30	$527 \cdot 1$
$62 \cdot 0$	$15 \cdot 86$	$15 \cdot 62$	0.9086	26.58	528.0					Mean	$527 \cdot 1$

Ethyl α-cyano- β-methyl- β-ethylacrylate. B. p. $95 \cdot 5^{\circ} / 3 \mathrm{~mm} . ; ~ M=167 \cdot 20 ; n_{\mathrm{D}} 1 \cdot 46410, n_{\mathrm{D}}$ $1.46771, n_{\mathrm{F}} 1.47685, n_{\mathrm{G}} 1.48446 ; R_{\mathrm{D}} 45.73, R_{\mathrm{D}} 46.03, R_{\mathrm{F}} 46.80, R_{\mathrm{G}} .47 .44 ; R_{\mathrm{G}-\mathrm{o}} 1 \cdot 71, R_{\mathrm{F}-\mathrm{c}}$ $1 \cdot 07 ; M n_{\mathrm{D}}^{20^{\circ}} 245 \cdot 40$.

Densities determined : $d_{4^{\circ}}^{20^{\circ}} 1 \cdot 0091, d_{4^{\circ}}^{62 \cdot 1^{\circ}} 0.9699, d_{4^{\circ}}^{86 \cdot 3^{\circ}} 0.9488$.
$\gamma_{20^{\circ}}=34 \cdot 43$ (0.10). App. A.

16.9	18.58	18.34	1.0119	34.75	401.2	85.5	15.91	15.67	0.9495	27.86	404.5
61.3	16.76	16.52	0.9706	30.02	403.2						Mean 403.0

Ethyl α-cyano- $\beta 3$-diethylacrylate. B. p. $96.5^{\circ} / 3 \mathrm{~mm}$.; $M=181 \cdot 23 ; n_{\mathrm{o}} 1 \cdot 46343, n_{\mathrm{D}} 1 \cdot 46692$, $n_{\mathrm{F}} 1 \cdot 47594, n_{\mathrm{G}^{\prime}} 1 \cdot 48327 ; R_{\mathrm{d}} 50 \cdot 30, R_{\mathrm{D}} 50.79, R_{\mathrm{F}} 51 \cdot 46, R_{\mathrm{G}^{\prime}} 52 \cdot 13 ; R_{\mathrm{G}^{\prime}-\mathrm{o}} 1 \cdot 83, R_{\mathrm{F}-\mathrm{o}} 1 \cdot 16$; $M n_{\mathrm{D}}^{20^{\circ}} 265 \cdot 85$.

Densities determined : $d_{4^{\circ}}^{20^{\circ}} 0.9931, d_{4^{6}}^{63 \cdot 1^{\circ}} 0.9561, d_{4^{\circ}}^{86 \cdot 9^{\circ}} 0.9362$.

$\gamma_{20^{\circ}}=33.53(0.098) . \quad$ App. A.											
$19 \cdot 1$	18.30	18.06	0.9938	33.61	$439 \cdot 1$	86.0	$15 \cdot 68$	$15 \cdot 44$	0.9370	27.09	$441 \cdot 3$
$62 \cdot 0$	16.64	16.40	0.9571	29.39	$440 \cdot 9$					Mean	$440 \cdot$

Ethyl α-cyano- β-methyl- β-n-propylacrylate. B. p. $100^{\circ} / 3 \mathrm{~mm}$.; $M=181 \cdot 23 ; n_{\mathrm{o}} 1 \cdot 46471$, $n_{\mathrm{D}} 1 \cdot 46829, n_{\mathrm{F}} 1 \cdot 47740, n_{\mathrm{G}} \cdot 1 \cdot 48484 ; R_{\mathrm{G}} 50 \cdot 59, R_{\mathrm{D}} 50 \cdot 92, R_{\mathrm{F}} 51 \cdot 77, R_{\mathrm{G}^{\prime}} 52 \cdot 45 ; R_{G^{\prime}-\mathrm{o}} 1 \cdot 86$, $R_{F-\mathrm{C}} 1 \cdot 18 ; M n_{\mathrm{D}}^{20^{\circ}} 266 \cdot 10$.

Densities determined : $d_{49^{20}} 0.9899, d_{4^{63 .}}{ }^{\circ} 0.9523, d_{48}^{85 \cdot 5^{\circ}} 0.9335$.

$\gamma_{20^{\circ}}=$	33.21	$\left(0.09_{3}\right)$.	App. A.				
33.27	439.4	86.3	15.72	15.48	0.9328	27.04	443.
29.34	441.2					Mean 441.2	

Ethyl α-cyano- β-ethyl- β-n-propylacrylate. B. p. $104.5^{\circ} / 3 \mathrm{~mm} . ; \quad M=195 \cdot 26 ; n_{\mathrm{o}} 1 \cdot 46486$,
 $R_{\text {F-O }} 1 \cdot 26 ; M n_{\mathrm{D}}^{20^{\circ}} 286 \cdot 72$.

Densities determined : $d_{4^{\circ}}^{20^{\circ}} 0.9768, d_{4^{\circ}}^{62 \cdot 4^{\circ}} 0.9420, d_{4^{\circ}}^{86 \cdot 3^{\circ}} 0.9221$.

| 61.9 | 16.25 | 16.01 | 0.9424 | 28.25 | 477.7 | Mean 477.7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Ethyl α-cyano- $\beta \beta$-di-n-propylacrylate. B. p. $116.5^{\circ} / 4 \mathrm{~mm} . ; \quad M=209.28 ; n_{\mathrm{o}} 1 \cdot 46422$, $n_{\mathrm{D}} 1 \cdot 46771, n_{\mathrm{F}} 1 \cdot 47648, n_{\mathrm{G}^{\prime}} 1 \cdot 48380 ; R_{\mathrm{C}} 59 \cdot 99, R_{\mathrm{D}} 60 \cdot 19, R_{\mathrm{F}} 61 \cdot 34, R_{\mathrm{G}^{\prime}} 62 \cdot 15 ; R_{\mathrm{G}^{\prime}-\mathrm{O}} 2 \cdot 16$, $R_{\mathrm{F}-\mathrm{o}} \mathrm{l} \cdot 35 ; M n_{\mathrm{D}}^{20^{\circ}} 307 \cdot 16$.

Densities determined : $d_{4^{\circ}}^{20^{\circ}} 0.9630, d_{4^{\circ}}^{63 \cdot 1^{\circ}} 0.9287, d_{4^{\circ}}^{85 \cdot 3^{\circ}} 0.9115$.

$\gamma_{20^{\circ}}=31.81\left(0.09_{5}\right) . \quad$ App. A.											
18.7	$17 \cdot 83$	$17 \cdot 69$	0.9641	31.93	$515 \cdot 8$	$85 \cdot 6$	$15 \cdot 32$	$15 \cdot 08$	0.9113	25.73	517.2
61.7	$16 \cdot 19$	15.95	0.9298	27.77	516.7					Mea	516

The authors' thanks are tendered to Imperial Chemical Industries Ltd. and to the Chemical Society for grants which have largely defrayed the cost of the research.

